Approximation of Partial Capacitated Vertex Cover
نویسندگان
چکیده
We study the partial capacitated vertex cover problem (pcvc) in which the input consists of a graphG and a covering requirement L. Each edge e in G is associated with a demand (or load) l(e), and each vertex v is associated with a (soft) capacity c(v) and a weight w(v). A feasible solution is an assignment of edges to vertices such that the total demand of assigned edges is at least L. The weight of a solution is ∑ v α(v)w(v), where α(v) is the number of copies of v required to cover the demand of the edges that are assigned to v. The goal is to find a solution of minimum weight. We consider three variants of pcvc. In pcvc with separable demands the only requirement is that total demand of edges assigned to v is at most α(v)c(v). In pcvc with inseparable demands there is an additional requirement that if an edge is assigned to v then it must be assigned to one of its copies. The third variant is the unit demands version. We present 3-approximation algorithms for both pcvc with separable demands and pcvc with inseparable demands. We also present a 2-approximation algorithm for pcvc with unit demands. We show that similar results can be obtained for pcvc in hypergraphs and for the prize collecting version of capacitated vertex cover. Our algorithms are based on a unified approach for designing and analyzing approximation algorithms for capacitated covering problems. This approach yields simple algorithms whose analyses rely on the local ratio technique and sophisticated charging schemes.
منابع مشابه
Exact Algorithms for Generalizations of Vertex Cover
The NP-complete Vertex Cover problem has been intensively studied in the field of parameterized complexity theory. However, there exists only little work concerning important generalizations of Vertex Cover like Partial Vertex Cover, Connected Vertex Cover, and Capacitated Vertex Cover which are of high interest in theory as well as in real-world applications. So far research was mainly focused...
متن کاملParameterized Complexity of Generalized Vertex Cover Problems
Important generalizations of the Vertex Cover problem (Connected Vertex Cover,Capacitated Vertex Cover, andMaximum Partial Vertex Cover) have been intensively studied in terms of approximability. However, their parameterized complexity has so far been completely open. We close this gap here by showing that, with the size of the desired vertex cover as parameter, Connected Vertex Cover and Capac...
متن کاملReplica Placement via Capacitated Vertex Cover
In this paper, we study the replica placement problem on trees and present a constant factor approximation algorithm (with an additional additive constant factor). This improves the best known previous algorithm having an approximation ratio dependent on the maximum degree of the tree. Our techniques also extend to the partial cover version. Our algorithms are based on the LP rounding technique...
متن کاملSet Cover Revisited: Hypergraph Cover with Hard Capacities
In this paper, we consider generalizations of classical covering problems to handle hard capacities. In the hard capacitated set cover problem, additionally each set has a covering capacity which we are not allowed to exceed. In other words, after picking a set, we may cover at most a specified number of elements. Based on the classical results by Wolsey, an O(log n) approximation follows for t...
متن کاملCapacitated Domination and Covering: A Parameterized Perspective
Capacitated versions of Vertex Cover and Dominating Set have been studied intensively in terms of polynomial time approximation algorithms. Although the problems Dominating Set and Vertex Cover have been subjected to considerable scrutiny in the parameterized complexity world, this is not true for their capacitated versions. Here we make an attempt to understand the behavior of the problems Cap...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- SIAM J. Discrete Math.
دوره 24 شماره
صفحات -
تاریخ انتشار 2007